Inwardly rectifying potassium channels (Kir) in central nervous system glia: a special role for Kir4.1 in glial functions
نویسندگان
چکیده
Glia in the central nervous system (CNS) express diverse inward rectifying potassium channels (Kir). The major function of Kir is in establishing the high potassium (K+) selectivity of the glial cell membrane and strongly negative resting membrane potential (RMP), which are characteristic physiological properties of glia. The classical property of Kir is that K+ flows inwards when the RMP is negative to the equilibrium potential for K+ (E(K)), but at more positive potentials outward currents are inhibited. This provides the driving force for glial uptake of K+ released during neuronal activity, by the processes of "K+ spatial buffering" and "K+ siphoning", considered a key function of astrocytes, the main glial cell type in the CNS. Glia express multiple Kir channel subtypes, which are likely to have distinct functional roles related to their differences in conductance, and sensitivity to intracellular and extracellular factors, including pH, ATP, G-proteins, neurotransmitters and hormones. A feature of CNS glia is their specific expression of the Kir4.1 subtype, which is a major K+ conductance in glial cell membranes and has a key role in setting the glial RMP. It is proposed that Kir4.1 have a primary function in K+ regulation, both as homomeric channels and as heteromeric channels by co-assembly with Kir5.1 and probably Kir2.0 subtypes. Significantly, Kir4.1 are also expressed by oligodendrocytes, the myelin-forming cells of the CNS, and the genetic ablation of Kir4.1 results in severe hypomyelination. Hence, Kir, and in particular Kir4.1, are key regulators of glial functions, which in turn determine neuronal excitability and axonal conduction.
منابع مشابه
Kir potassium channel subunit expression in retinal glial cells: implications for spatial potassium buffering.
To understand the role of different K(+) channel subtypes in glial cell-mediated spatial buffering of extracellular K(+), immunohistochemical localization of inwardly rectifying K(+) channel subunits (Kir2.1, Kir2.2, Kir2.3, Kir4.1, and Kir5.1) was performed in the retina of the mouse. Stainings were found for the weakly inward-rectifying K(+) channel subunit Kir4.1 and for the strongly inward-...
متن کاملHeterologous expression of a glial Kir channel (KCNJ10) in a neuroblastoma spinal cord (NSC-34) cell line.
Heterologous expression of Kir channels offers a tool to modulate excitability of neurons which provide insight into Kir channel functions in general. Inwardly-rectifying K+ channels (Kir channels) are potential candidate proteins to hyperpolarize neuronal cell membranes. However, heterologous expression of inwardly-rectifying K+ channels has previously proven to be difficult. This was mainly d...
متن کاملThe potassium channel Kir4.1 associates with the dystrophin-glycoprotein complex via alpha-syntrophin in glia.
One of the major physiological roles of potassium channels in glial cells is to promote "potassium spatial buffering" in the central nervous system, a process necessary to maintain an optimal potassium concentration in the extracellular environment. This process requires the precise distribution of potassium channels accumulated at high density in discrete subdomains of glial cell membranes. To...
متن کاملAn inwardly rectifying K(+) channel, Kir4.1, expressed in astrocytes surrounds synapses and blood vessels in brain.
Glial cells express inwardly rectifying K(+) (Kir) channels, which play a critical role in the buffering of extracellular K(+). Kir4.1 is the only Kir channel so far shown to be expressed in brain glial cells. We examined the distribution of Kir4.1 in rat brain with a specific antibody. The Kir4.1 immunostaining distributed broadly but not diffusely in the brain. It was strong in some regions s...
متن کاملModulation of the inwardly rectifying potassium channel Kir4.1 by the pro-invasive miR-5096 in glioblastoma cells
Inwardly rectifying potassium channels (Kir), and especially the barium-sensitive Kir4.1 encoded by KCNJ10, are key regulators of glial functions. A lower expression or mislocation of Kir4.1 is detected in human brain tumors. MicroRNAs participate in the regulation of ionic channels and associated neurologic disorders. Here, we analyze effects of miR-5096 on the Kir4.1 expression and function i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2006